Nuclear Physics investigates the fundamental interactions governing the world of subatomic particles. Nuclei are the massive tiny core of atoms that give them their identity as specific isotopes of a given element. They are made up of protons, the number of which determine the element, and neutrons, the number of which determine the isotope. These building blocks, protons and neutrons (collectively called hadrons), constitute over 90% of the visible mass in the Universe. They are composites of more fundamental particles known as quarks and gluons. The goal of understanding the structures of nuclei and hadrons has led to the exploration of the fundamental forces, the strong force and the weak force, and their symmetries, which are fundamentally important; the underlying quark and gluonic structure of the protons and neutrons; as well as nuclear matter under extreme conditions.
Nuclear Physics
Formulation of the underlying mathematical description of quark-gluon interactions is known as the Quantum Chromo-dynamics (QCD). The theory of QCD is complicated and so far only a limited number of predictions have been theoretically made and experimentally validated. The main focus of the research in theoretical nuclear physics is to develop tools and techniques for studying the subatomic structure of matter as well as to advance our understanding of various nuclear phenomena in terms of QCD.
Members of the Indiana University Nuclear Physics Experiment Group perform a wide variety of research to unravel mysteries in nuclear systems. Search for new macroscopic force and tests of fundamental symmetries would potentially open novel windows into hitherto unknown principles of physics. Studies of neutrino oscillations and neutrino-nuclear interactions aim to advance our fundamental understanding of both the weak and the strong forces in nature. Collider experiments involving hadrons and nuclei will help explain some of the most basic properties of hadrons like the origin of their mass and spin.
The boundaries that traditionally separated Nuclear Physics, high-energy physics, condensed matter and many-body physics have been dissolving. Today Nuclear Physics experiments may be using energies that are higher than those of some high-energy laboratories while high-energy physicists may be conducting experiments at Nuclear Physics facilities. Several phenomena that govern strongly interacting quark-gluon systems have analogies in atomic or condensed matter physics. Physics of the stellar evolution involves Nuclear Physics when addressing the question of the origin of elements and fate of stars.