The NOvA Neutrino Oscillation Experiment
Prof. Mark Messier
NOvA studies the muon-to-electron neutrino oscillation using both neutrinos and anti-neutrinos. Students will help to develop and test event reconstruction software and use the standard tools of high energy physics to simulate detector performance, analyze events from the detector, and test ideas for improvements or enhancements to the existing detectors.
Dark Energy
Prof. Mike Berger
The introduction of an interaction for dark energy to the standard cosmology offers a potential solution to the cosmic coincidence problem, a scheme for introducing a holographic foundation for dark energy, as well as the possibility of giving a unified description of early inflation and present accelerated expansion of the Universe. Students perform analytical work as well as numerical simulations to investigate possible physical choices for the behavior of dark matter in the Friedmann-Robertson-Walker framework. The goal is to obtain a good fit to the observational data supporting an accelerating Universe, and a successful model would represent a possible alternative interpretation of the expansion history of the Universe.
Theoretical Studies of Relativity Tests
Dr. Ralf Lehnert
Special relativity (SR) is one of the most basic and best confirmed theories physics. However, recent theoretical ideas in the context of new models beyond established physics suggest that there may, in fact, be the possibility of small departures from SR. Such hypothetical deviations from SR would affect many physical systems, such as the relation between energy and momentum for free particles. Predictions of this type can be employed for ultra-sensitive experimental tests of SR. This project involves modeling such deviations from SR with the goal to identify possible high-precision relativity tests. The prerequisites for research along these lines include an elementary knowledge of SR and basic undergraduate electrodynamics and quantum mechanics.