• Skip to Content
  • Skip to Main Navigation
  • Skip to Search

Indiana University Bloomington Indiana University Bloomington IU Bloomington

Open Search Menu

The College of Arts & Sciences

Department of Physics

  • Home
  • About
    • Directory
    • Chair's Message
    • Diversity & Inclusion
    • Employment Opportunities
    • Visit Us
    • Directions & Building Maps
    • About Bloomington
  • Undergraduate
    • Physics B.A.
    • Traditional Physics B.S.
    • Applied Physics B.S.
    • Physics Minor
    • Honors Program
    • Courses
    • Advising
    • Funding Opportunities
    • Scholarships & Awards
    • Research Opportunities
    • Student Experience
    • Career Preparation
  • Graduate
    • Master's Degrees
    • Doctoral Degrees
    • APS Bridge Program
    • Courses
    • Advising
    • Financial Support
    • Fellowships & Awards
    • Student Experience
    • Career Preparation
    • How to Apply
  • Research
    • Research Areas
    • Centers & Institutes
  • Alumni & Giving
    • Get Involved
  • Outreach
    • Annual Community Events
    • Outreach Programs
    • Educational Services & Associations
  • News & Events
    • Events
    • Department news
  • Search
  • Contact
  • Student Portal
  • Events
  • Department news
  • Home
  • News & Events
  • Department news
  • Overloaded Brains Cannot Operate at a Critical State

Overloaded Brains Cannot Operate at a Critical State

Monday, March 1, 2021

A constant bombardment of stimuli drives the brain’s dynamics away from a critical point to a “quasicritical” state. 

Even while you sleep, each cubic millimeter of your brain’s cortex receives around 100,000 electrical signals per second. This constant bombardment prevents the brain from operating at its critical point, IU research suggests, in a manner that is simple and predictable. 

The critical brain hypothesis argues that the brains of all animals—from turtles to rats, mice to monkeys—run near their maximum operating potential. Recent findings show a strong trend of nearly optimal information processing across many species. 

But a problem has emerged. Activity levels differ between different brains, and sometimes within an individual brain over time, likely due to changes in external stimuli and behavior. Mathematically, the results suggest brain activity does not adhere to a single universality class, as would be expected. Yet somehow, the strong criticality trend still holds.

The IU team offers a solution to the paradox: quasicriticality. Their new organizing principle explains how neural networks can show signs of approaching the critical point, despite constantly changing stimuli and the apparent absence of a single universality class. 

Quasicriticality fits data from recent studies as well as new experiments. The researchers grew mouse cortical tissue in culture, then measured its operations in response to different naturally-occurring levels of stimuli. The new proposal could substantially reshape brain research.

The research has been subject of a Viewpoint article in Physics. 
  • Faculty + Staff + Grad Student Intranet

Department of Physics social media channels

  • Twitter
  • Facebook
  • College of Arts & Sciences
  • Department of Physics

The College of Arts & Sciences

Indiana University

Copyright © 2025 The Trustees of Indiana University

Accessibility | College Scorecard | Privacy Notice

The College of Arts & Sciences

  • About
    • Directory
      • All Faculty & Scientists
        • Faculty
        • Adjunct & Visiting Faculty
        • Research Scientists
        • Research Associates & Postdoctoral Fellows
        • Emeriti and Retired Faculty
        • Past Faculty
      • Staff
      • Graduate Students
      • Facilities & Support
    • Chair's Message
    • Diversity & Inclusion
      • Trailblazers from IUB Physics
    • Employment Opportunities
    • Visit Us
    • Directions & Building Maps
    • About Bloomington
      • Music + Entertainment
      • Campus Culture & Resources
      • Food & Restaurants
      • Sustainability
      • Sports & Fitness
      • Housing In Bloomington
  • Undergraduate
    • Physics B.A.
    • Traditional Physics B.S.
    • Applied Physics B.S.
      • FAQs
    • Physics Minor
    • Honors Program
    • Courses
    • Advising
    • Funding Opportunities
    • Scholarships & Awards
    • Research Opportunities
    • Student Experience
    • Career Preparation
      • Career Advising
      • Internships
  • Graduate
    • Master's Degrees
    • Doctoral Degrees
    • APS Bridge Program
    • Courses
    • Advising
    • Financial Support
    • Fellowships & Awards
    • Student Experience
    • Career Preparation
    • How to Apply
      • Domestic Applications
      • International Applications
  • Research
    • Research Areas
      • Quantum Information and Science Technology
      • Astrophysics
      • Atomic Physics and Quantum Information
      • Biophysics
      • Chemical Physics
      • Condensed Matter Physics
      • Elementary Particle Physics
      • Gravitational Physics
      • Mathematical Physics
      • Neutrino Physics
      • Nuclear Physics
    • Centers & Institutes
  • Alumni & Giving
    • Get Involved
  • Outreach
    • Annual Community Events
    • Outreach Programs
      • NSF Research Experience
    • Educational Services & Associations
  • News & Events
    • Events
      • Colloquium Calendar
      • CMP/AMO Seminars
      • Past Events
      • High-Energy Physics/Astrophysics Seminar
    • Department news
  • Contact
  • Student Portal
    • Undergraduate
      • Physics B.A.
      • Traditional Physics B.S.
      • Applied Physics B.S.
        • Applied Physics Internship
      • Physics Minor
      • Honors
        • Honors Thesis
      • Advising
      • Tutoring
      • Research Opportunities
      • Internships
    • Graduate
      • Master's Degrees
        • Qualifying Exam
      • Doctoral Degrees
        • Qualifying Exam
        • Candidacy
        • Dissertation
        • Scientific Computing Ph.D. Minor
      • Advising
      • Graduate Student Academic Services
    • Courses
    • Student Groups
      • Physics Club
      • Physics Forum
      • IU Gender Minorities and Women in Physics
      • Physics Graduate Student Council