• Skip to Content
  • Skip to Main Navigation
  • Skip to Search

Indiana University Bloomington Indiana University Bloomington IU Bloomington

Open Search Menu

The College of Arts & Sciences

Department of Physics

  • Home
  • About
    • Directory
    • Chair's Message
    • Diversity & Inclusion
    • Employment Opportunities
    • Visit Us
    • Directions & Building Maps
    • About Bloomington
  • Undergraduate
    • Physics B.A.
    • Traditional Physics B.S.
    • Applied Physics B.S.
    • Physics Minor
    • Honors Program
    • Courses
    • Advising
    • Funding Opportunities
    • Scholarships & Awards
    • Research Opportunities
    • Student Experience
    • Career Preparation
  • Graduate
    • Master's Degrees
    • Doctoral Degrees
    • APS Bridge Program
    • Courses
    • Advising
    • Financial Support
    • Fellowships & Awards
    • Student Experience
    • Career Preparation
    • How to Apply
  • Research
    • Research Areas
    • Centers & Institutes
  • Alumni & Giving
    • Get Involved
  • Outreach
    • Annual Community Events
    • Outreach Programs
    • Educational Services & Associations
  • News & Events
    • Events
    • Department news
  • Search
  • Contact
  • Student Portal
  • Events
    • Colloquium Calendar
    • CMP/AMO Seminars
    • Past Events
    • High-Energy Physics/Astrophysics Seminar
  • Department news
  • Home
  • News & Events
  • Events
  • Past Events
  • CMP Seminar: Yashar Komijani

CMP Seminar: Yashar Komijani

Friday, October 29, 2021

3:00 P.M.

Location: Swain West 214

Quantum electronic matter has long been understood in terms of two limiting behaviors of electrons:  one of delocalized metallic states, and the other of localized magnetic states. Heavy fermions are miniature high-Tc superconductors whose small energy scales provide the possibility of tuning the ground state between these two limits and enable accessing the strange metallic behavior which develops at the brink of localization. I will discuss the attempts [1,2] to map out the phase diagram of heavy-fermions using dynamical large-N method and the Schwinger boson representation of the spins.

I will then highlight the recent observation of quantum critical point and strange metal behavior in the stoichiometric ferromagnetic heavy-fermion CeRh6Ge4 [3]. I will argue that the innocuous easy-plane magnetic anisotropy that is present in this system, produces triplet resonating valence bond (tRVB) states, which lead to a highly entangled ordered phase, similar to a magnetically-frustrated anti-ferromagnet. Doping such a tRVB host provides a route towards realizing triplet superconductivity in a magnetic environment [4].

 

References:

[1] Y. Komijani, P. Coleman, PRL 120, 157206 (2018); ibid 122, 217001 (2019).

[2] J. Wang, Y.-Y. Chang, C.-Y. Mou, S. Kirchner, C.-H. Chung, PRB 102, 115133 (2019).

[3] B. Shen, Y. Zhang, Y. Komijani, M. Nicklas, R. Borth, A. Wang, Y. Chen, Z. Nie, R. Li, X. Lu, H. Lee, M. Smidman,

F. Steglich, P. Coleman, H. Yuan, Nature 579, 51 (2020).

[4] E. König, Y. Komijani, P. Coleman, ArXiv:2109.03851 (2021).
  • Faculty + Staff + Grad Student Intranet

Department of Physics social media channels

  • Twitter
  • Facebook
  • College of Arts & Sciences
  • Department of Physics

The College of Arts & Sciences

Indiana University

Copyright © 2025 The Trustees of Indiana University

Accessibility | College Scorecard | Privacy Notice

The College of Arts & Sciences

  • About
    • Directory
      • All Faculty & Scientists
        • Faculty
        • Adjunct & Visiting Faculty
        • Research Scientists
        • Research Associates & Postdoctoral Fellows
        • Emeriti and Retired Faculty
        • Past Faculty
      • Staff
      • Graduate Students
      • Facilities & Support
    • Chair's Message
    • Diversity & Inclusion
      • Trailblazers from IUB Physics
    • Employment Opportunities
    • Visit Us
    • Directions & Building Maps
    • About Bloomington
      • Music + Entertainment
      • Campus Culture & Resources
      • Food & Restaurants
      • Sustainability
      • Sports & Fitness
      • Housing In Bloomington
  • Undergraduate
    • Physics B.A.
    • Traditional Physics B.S.
    • Applied Physics B.S.
      • FAQs
    • Physics Minor
    • Honors Program
    • Courses
    • Advising
    • Funding Opportunities
    • Scholarships & Awards
    • Research Opportunities
    • Student Experience
    • Career Preparation
      • Career Advising
      • Internships
  • Graduate
    • Master's Degrees
    • Doctoral Degrees
    • APS Bridge Program
    • Courses
    • Advising
    • Financial Support
    • Fellowships & Awards
    • Student Experience
    • Career Preparation
    • How to Apply
      • Domestic Applications
      • International Applications
  • Research
    • Research Areas
      • Quantum Information and Science Technology
      • Astrophysics
      • Atomic Physics and Quantum Information
      • Biophysics
      • Chemical Physics
      • Condensed Matter Physics
      • Elementary Particle Physics
      • Gravitational Physics
      • Mathematical Physics
      • Neutrino Physics
      • Nuclear Physics
    • Centers & Institutes
  • Alumni & Giving
    • Get Involved
  • Outreach
    • Annual Community Events
    • Outreach Programs
      • NSF Research Experience
    • Educational Services & Associations
  • News & Events
    • Events
      • Colloquium Calendar
      • CMP/AMO Seminars
      • Past Events
      • High-Energy Physics/Astrophysics Seminar
    • Department news
  • Contact
  • Student Portal
    • Undergraduate
      • Physics B.A.
      • Traditional Physics B.S.
      • Applied Physics B.S.
        • Applied Physics Internship
      • Physics Minor
      • Honors
        • Honors Thesis
      • Advising
      • Tutoring
      • Research Opportunities
      • Internships
    • Graduate
      • Master's Degrees
        • Qualifying Exam
      • Doctoral Degrees
        • Qualifying Exam
        • Candidacy
        • Dissertation
        • Scientific Computing Ph.D. Minor
      • Advising
      • Graduate Student Academic Services
    • Courses
    • Student Groups
      • Physics Club
      • Physics Forum
      • IU Gender Minorities and Women in Physics
      • Physics Graduate Student Council