Phil Richerme

Phil Richerme

Assistant Professor, Physics

Education

  • Postdoctoral Position, Joint Quantum Institute, College Park, MD
  • Ph.D., Harvard University, 2012
  • M.A., Harvard University, 2008
  • B.S., Massachusetts Institute of Technology, 2006

Research interests

atomic physics (experimental)

About Phil Richerme

My research interests lie at the intersection of atomic physics and quantum information, where collections of cold, trapped ions can serve as well-isolated systems for studying quantum many-body physics or as a new computational resource for solving classically intractable problems. Each trapped ion encodes a quantum spin, and lasers provide the "connections" to couple the spins together. I am particularly interested to investigate new ion trap geometries and methods to realize 2D and 3D spin lattices, which can exhibit important physics that is inaccessible to the current 1D systems. Scaling these systems to hundreds of coupled spins (and beyond) will likely require construction of cryogenic traps, which will provide the ions exquisite isolation from their background environments.

Selected publications

Many-body localization in a quantum simulator with programmable random disorder J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P.W. Hess, P. Hauke, M. Heyl, D.A. Huse, and C. Monroe arXiv:1508.07026 (2015).

Realization of a Quantum Integer-Spin Chain with Controllable Interactions C. Senko, P. Richerme, J. Smith, A. Lee, I. Cohen, A. Retzker, and C. Monroe. Phys. Rev. X. 5, 021026 (2015).

Non-local propagation of correlations in quantum systems with long-range interactions P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig, S. Michalakis, A.V. Gorshkov, and C. Monroe. Nature 511, 198 (2014).

Coherent Imaging Spectroscopy of a Quantum Many-Body Spin System C. Senko, J. Smith, P. Richerme, A. Lee, W. C. Campbell, and C. Monroe. Science 345, 430 (2014).

Quantum Catalysis of Magnetic Phase Transitions in a Quantum Simulator P. Richerme, C. Senko, S. Korenblit, J. Smith, A. Lee, W. C. Campbell, and C. Monroe. Phys. Rev. Lett. 111, 100506 (2013).

Experimental Performance of a Quantum Simulator: Optimizing Adiabatic Evolution and Identifying Many-Body Ground States P. Richerme, C. Senko, J. Smith, A. Lee, and C. Monroe. Phys. Rev. A. 88, 012334 (2013).

Using electric fields to prevent mirror-trapped antiprotons in antihydrogen studies P. Richerme, G. Gabrielse, S. Ettenauer, R. Kalra, E. Tardiff, D.W. Fitzakerley, M.C. George, E.A. Hessels, C.H. Storry, M. Weel, A. Muellers, and J. Walz. Phys. Rev. A. 87, 023422 (2013).

Trapped Antihydrogen in Its Ground State G. Gabrielse, R. Kalra, W.S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinkski, D.W. Fitzakerley, M.C. George, E.A. Hessels, C.H. Storry, M. Weel, A. Muellers, and J. Walz. Phys. Rev. Lett. 108, 113002 (2012).

Phil Richerme

Phil Richerme

Assistant Professor, Physics

Education

  • Postdoctoral Position, Joint Quantum Institute, College Park, MD
  • Ph.D., Harvard University, 2012
  • M.A., Harvard University, 2008
  • B.S., Massachusetts Institute of Technology, 2006

Research interests

atomic physics (experimental)

About Phil Richerme

My research interests lie at the intersection of atomic physics and quantum information, where collections of cold, trapped ions can serve as well-isolated systems for studying quantum many-body physics or as a new computational resource for solving classically intractable problems. Each trapped ion encodes a quantum spin, and lasers provide the "connections" to couple the spins together. I am particularly interested to investigate new ion trap geometries and methods to realize 2D and 3D spin lattices, which can exhibit important physics that is inaccessible to the current 1D systems. Scaling these systems to hundreds of coupled spins (and beyond) will likely require construction of cryogenic traps, which will provide the ions exquisite isolation from their background environments.

Selected publications

Many-body localization in a quantum simulator with programmable random disorder J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P.W. Hess, P. Hauke, M. Heyl, D.A. Huse, and C. Monroe arXiv:1508.07026 (2015).

Realization of a Quantum Integer-Spin Chain with Controllable Interactions C. Senko, P. Richerme, J. Smith, A. Lee, I. Cohen, A. Retzker, and C. Monroe. Phys. Rev. X. 5, 021026 (2015).

Non-local propagation of correlations in quantum systems with long-range interactions P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig, S. Michalakis, A.V. Gorshkov, and C. Monroe. Nature 511, 198 (2014).

Coherent Imaging Spectroscopy of a Quantum Many-Body Spin System C. Senko, J. Smith, P. Richerme, A. Lee, W. C. Campbell, and C. Monroe. Science 345, 430 (2014).

Quantum Catalysis of Magnetic Phase Transitions in a Quantum Simulator P. Richerme, C. Senko, S. Korenblit, J. Smith, A. Lee, W. C. Campbell, and C. Monroe. Phys. Rev. Lett. 111, 100506 (2013).

Experimental Performance of a Quantum Simulator: Optimizing Adiabatic Evolution and Identifying Many-Body Ground States P. Richerme, C. Senko, J. Smith, A. Lee, and C. Monroe. Phys. Rev. A. 88, 012334 (2013).

Using electric fields to prevent mirror-trapped antiprotons in antihydrogen studies P. Richerme, G. Gabrielse, S. Ettenauer, R. Kalra, E. Tardiff, D.W. Fitzakerley, M.C. George, E.A. Hessels, C.H. Storry, M. Weel, A. Muellers, and J. Walz. Phys. Rev. A. 87, 023422 (2013).

Trapped Antihydrogen in Its Ground State G. Gabrielse, R. Kalra, W.S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinkski, D.W. Fitzakerley, M.C. George, E.A. Hessels, C.H. Storry, M. Weel, A. Muellers, and J. Walz. Phys. Rev. Lett. 108, 113002 (2012).