Genetic Algorithm

- Optimization
- Algorithm
- Dominance and Nondominated Sorting
- Crowding Distance

Application on Lattice Optimization

- ϵ, β_x
- $\epsilon, \text{Low-high } \beta_x$

Reference
Motivation: Magnetic Lattice Optimization on ALS

We want to optimize brightness:

1. Emittance ϵ_x.
2. Match β_x to ID(insertion device).

by tuning

- Quad strength: k_{QF}, k_{QD}.

Constraints:

- $|\text{Tr}(M)| \leq 2$.
- $J_x > 0, J_E > 0$.

$\nu_x = 1.19$, $\nu_y = 0.77$, $\epsilon = 3.10$ [nm]
There are many ways ...
There are many ways ...

- Deterministic, $\epsilon(k_{QF}, k_{QD}), \epsilon'_k$
- Brute force, (k_{QF}, k_{QD})
There are many ways ...

- Deterministic, $\epsilon(k_{QF}, k_{QD}), \epsilon'_k$
- Brute force, (k_{QF}, k_{QD})
- Stochastic, Evolutionary
GA has been used on DC gun photoinjector [Bazarov and Sinclair, 2005].

- Population based.
- Iterative (generation).
- Red: violate the constraints.
- Green: meet the constraints.

$\left(k_{QF}, k_{QD}\right)$.
Multi-Objective Optimization

Airline tickets for 2012 London Olympics

Cost $ \uparrow$

Time $h \downarrow$

Best
Not the best
So far the best

- Time ?
- Cost ?
- Weighted sum ?
- Whole picture.
Multi-Objective Optimization

Airline tickets for 2012 London Olympics

- AA1
- UA1
- NW1
- BA1
- UA2

- Time?
- Cost?
- Weighted sum?
- Whole picture.
Objective Space

- **Generation**: $f: 0, 10, 76$; $x: 100$.
- **Red**: violate the constraints
- **Green**: meet the constraints
- **Blue**: Pareto optimal set
The general form of an optimization problem is:

\[
\begin{align*}
\text{Minimize/Maximize} & \quad f_m(x), \quad m = 1, 2, \ldots, M; \\
\text{subject to} & \quad g_j \geq 0, \quad j = 1, 2, \ldots, J; \\
& \quad h_k(x) = 0, \quad k = 1, 2, \ldots, K; \\
& \quad x_i^{(L)} \leq x_i \leq x_i^{(U)}, \quad i = 1, 2, \ldots, N;
\end{align*}
\] (1)

MOGA (Multi-Objective Genetic Algorithm):

- Multiobjective, instead of single objective optimization of a weighted sum.
- Constraint.
Genetic Algorithm

Structure of MOGA/GA (Genetic Algorithm)

GA mimics the evolution of nature:

1. **Crossover**: generate children from parents.
2. **Mutation**: change the children.
3. **Nature select**: keep only certain number of population.

MOGA (Multi-Objective Genetic Algorithm)

1. Initialize population (first generation, random)
2. repeat
3. crossover: 2 parents → 2 children.
4. mutation: change children.
5. calculate \(f_m \)
6. nature select: “sorting”
7. until stop (reach maximum generation, find solution, ...)

Global Optimization of a Magnetic Lattice using Genetic Algorithms
Lingyun Yang
September 3, 2008
9 / 21
Our optimization problem [Yang et al., 2008, Robin et al., 2008]:

- **Optimize:**
 1. Emittance ϵ.
 2. $\min(\lvert\beta_x - 1.0\rvert)$.

- **Constraint:**
 - $|\text{Tr}(M_x)| \leq 2$, $|\text{Tr}(M_y)| \leq 2$
 - $\max(\beta_x) \leq 30$, $\max(\beta_y) \leq 30$
 - $\max(\eta_x) \leq 0.4$

- **Parameters:**
 1. QF, QD, QFA in one cell.

1. Evolution of objective functions. ϵ, $|\beta_x - 1|$

2. (k_{QF}, k_{QD}), (k_{QF}, k_{QFA}), (k_{QD}, k_{QFA})
GA: Initialization

You have a lot of freedom to create the first generation.

- No filter: keep everyone, no need to calculate f_m or g_i.
- Apply filter:
 - Check f_m.
 - Check g_i.

![Graph showing distribution of points in a genetic algorithm context]
GA: Crossover

Generate children from parents: $x^{(*,t)} \rightarrow x^{(*,t+1)}$. Parents are randomly chosen and used only once. (t – generation)

There are simple ones:

- Middle point. e.g. $0.5(x^{(1,t)} + x^{(2,t)})$
- Blend(BLX), $(1 - \gamma)x^{(1,t)} + \gamma x^{(2,t)}$. γ has random property, and extend certain range beyond $[0, 1]$.

More complicate ones:

1. Upper/Lower limit of variables. $[x^{(L)}, x^{(U)}]$
2. Continuous probability distribution. $P(x)$.
GA: Crossover

Children are generated around two parents in certain probability.

- $x \in [-3, 5]$
- We choose polynomial PDF.
- Boundary is automatic considered.
- 2 parents to 2 children for every dimension of parameter space.
- η_c to control the shape of PDF.
Genetic Algorithm

GA: Mutation

Purpose: keep diversity. For each individual:

1. Random, e.g. \(x^{(1,t+1)} = x^{(1,t+1)} + (r - 0.5)\Delta. \)

2. Non-Uniform, e.g.

\[
x^{(1,t+1)} = x^{(1,t+1)} + \tau(x(U) - x(L))(1 - r^{(1-t/t_{max})^b})
\]

3. Normally Distributed, \(x^{(1,t+1)} = x^{(1,t+1)} + N(0, \sigma). \)

More complicate ones will consider:

1. Boundary
2. Probability
GA: Mutation

The new value due to the mutation also follows certain distribution.

- Polynomial PDF.
- Equal probability go left or right.
- Boundaries are considered.
- η_m can control the shape of PDF.
Calculate f_m, merge parents and children

- Calculate objective function, here lattice properties.
 - Stable/unstable: betatron resonance ($|\text{Tr}(M)|, J_E, J_x$).
 - Constraint: β_x, β_y, η_x.
- **Elite-preserving**: merge parents and children, no difference.
 - The population number are fixed.
 - Good parents are kept.
 - Never went worse from generation to generation.

In order to pick the better ones, in multiobjective case, we use **nondominated sorting** to sort the whole population, and keep only the top half. (Airline ticket example).
Dominance

- **Domination** [Deb, 2001]. \(f^{(1)} \prec f^{(2)} \) (dominate, precede)
 1. The solution \(f_i^{(1)} \) is no worse than \(f_i^{(2)} \) in all \(m \)-objectives.
 2. The solution \(f^{(1)} \) is strictly better than \(f^{(2)} \) in at least one objective.

Given \(f, a_0, a_1, a_2, b_1, c_1 \) in a 2-dimensional objective space:

- \(a_1 \prec a_2 \), \(a_1 \) is "better" than \(a_2 \).
- \(a_0 \prec a_1 \)
- \(a_1, b_1 \) and \(c_1 \) are not dominated by each other.
Dominance

- **Domination** [Deb, 2001]. $f^{(1)} \prec f^{(2)}$ (dominate, precede)
 1. The solution $f_i^{(1)}$ is no worse than $f_i^{(2)}$ in all m-objectives.
 2. The solution $f^{(1)}$ is strictly better than $f^{(2)}$ in at least one objective.

- $a_1 \prec a_2$, a_1 is “better” than a_2.
- $a_0 \prec a_1$
- a_1, b_1 and c_1 are not dominated by each other.
3 Parameters, optimize ϵ and $\beta_x \rightarrow 1m$

- **Red**: violate the constraints, or no physical solution.
- **Green**: meet the constraints.
- **Blue**: Pareto optimal set, the best solutions so far.

Generation 19
3 Parameters, optimize ϵ and $\beta_x \rightarrow 1m$

- **Red**: violate the constraints, or no physical solution.
- **Green**: meet the constraints.
- **Blue**: Pareto optimal set, the best solutions so far.

1. Generation 19
2. Generation 46

![Graph showing generation 46 and 19 with points in red, green, and blue colors.]
3 Parameters, optimize ϵ and $\beta_x \rightarrow 1m$

- **Red**: violate the constraints, or no physical solution.
- **Green**: meet the constraints.
- **Blue**: Pareto optimal set, the best solutions so far.

1. **Generation 19**
2. **Generation 46**
3. **Generation 66**
3 Parameters, optimize \(\epsilon \) and \(\beta_x \rightarrow 1m \)

- **Red**: violate the constraints, or no physical solution.
- **Green**: meet the constraints.
- **Blue**: Pareto optimal set, the best solutions so far.

1. Generation 19
2. Generation 46
3. Generation 66
4. Generation 130
Application on Lattice Optimization

1. up left, small ϵ.

$\nu_x = 1.38, \ \nu_y = 0.23, \ \epsilon = 1.46 \ [nm]$
1. up left, small ϵ.
2. down left, β_x and ϵ.

$$\nu_x = 1.76, \quad \nu_y = 0.62, \quad \epsilon = 1.67 \text{ [nm]}$$
1. up left, small ϵ.
2. down left, β_x and ϵ.
3. down right, small $|\beta_x - 1|$.
6 Parameters, optimize ϵ and $\beta_x \rightarrow 1m/10m$

- Pareto optimal set.
6 Parameters, optimize ϵ and $\beta_x \rightarrow 1m/10m$

1. Pareto optimal set.
2. Twiss

$\nu_x=2.90, \quad \nu_y=1.38, \quad \epsilon=3.15$ [nm]
6 Parameters, optimize ϵ and $\beta_x \rightarrow 1m/10m$

1. Pareto optimal set.
2. Twiss
3. Twiss
6 Parameters, optimize ϵ and $\beta_x \rightarrow 1m/10m$

- Pareto optimal set.
- Twiss
- Twiss
- Movies

