A capacitor with a non-uniform dielectric

Consider a parallel-plate capacitor filled with non-uniform dielectric. The dielectric is still linear, in other words, \(P = \epsilon_0 \chi_e E \), but this time \(\chi_e \) varies as a function of position in the dielectric. Let’s say that \(\chi_e \) varies such that

\[
\epsilon_r = \epsilon_{r0} + ax.
\]

Here \(\epsilon_{r0} \) is a dimensionless constant, \(x \) is the distance from one plate, and \(a \) is constant with units 1/length. Let’s assume the area of the plates is \(A \) and their separation is \(d \). What is the capacitance?

Remember the strategy for computing capacitance: put a charge \(Q \) on the capacitor and then compute the potential difference between the plates in terms of this charge. The capacitance can then be identified by comparing this expression to \(V = Q/C \). In order to compute \(V \) we first need to find the electric field.

Let’s charge up the plates so that we have a free surface charge density of \(+\sigma_f \) on the left plate and \(-\sigma_f \) on the right plate. We can then compute the electric displacement \(\mathbf{D} \) based on the free charge, and obtain

\[
\mathbf{D} = \sigma_f \hat{x}.
\]

This then gives

\[
\mathbf{E} = \frac{1}{\epsilon} \mathbf{D} = \frac{\sigma_f}{\epsilon_0 (\epsilon_{r0} + ax)} \hat{x}.
\]

Now, to obtain the potential, we need to compute the line integral of this field from the negative plate to the positive plate. We have

\[
V = -\int \mathbf{E} \cdot d\mathbf{l} = -\frac{\sigma_f}{\epsilon_0} \int_d^0 \frac{1}{\epsilon_{r0} + ax} dx = \frac{\sigma_f}{\epsilon_0 a} \left[\ln(\epsilon_{r0} + ad) - \ln(\epsilon_{r0}) \right]
\]

Let’s rewrite the difference of logs as a log of a ratio and substitute in \(\sigma_f = Q/A \). This allows us to identify the capacitance

\[
V = \frac{Q \ln(1 + ad/\epsilon_{r0})}{A \epsilon_0 a} \implies C = \frac{A \epsilon_0 a}{\ln(1 + ad/\epsilon_{r0})}. \]

It is interesting to examine this expression in the limit that the dielectric is uniform. In this case we have \(a \to 0 \) and \(\epsilon_r = \epsilon_{r0} \). This poses a little problem since, in the expression above, substituting in \(a = 0 \) we have \(0 / \ln(1) = 0/0 \). It is helpful to remember that for small values of \(y \) we can write

\[
\ln(1 + y) = y - \frac{y^2}{2} + \frac{y^3}{3} + ...
\]

This means that for \(a \) very small we have

\[
C \approx \frac{A \epsilon_0 a}{\ln(1 + ad/\epsilon_{r0})} \approx \frac{A \epsilon_0 a}{(ad/\epsilon_{r0}) - (ad/\epsilon_{r0})^2/2} = \frac{A \epsilon_0}{d/\epsilon_{r0} - a(d/\epsilon_{r0})^2/2}.
\]

We can see that in the limit \(a \to 0 \) this expression reduces to \(\epsilon_0 \epsilon_0 A/d \), which is exactly what we expect for a parallel plate capacitor with dielectric constant \(\epsilon_{r0} \). Exercise: Compute the bound charge densities \(\sigma_b \) on both sides of the capacitor. Which side should have the higher bound charge density? In this case, \(\rho_b \neq 0 \) – compute it also. Does its sign agree with your intuition? Integrate \(\rho_b \) over the volume and show that it is equal in magnitude but opposite in sign to the sum of the bound surface charge.