7.5

\[K_F = \frac{1}{2} m_F (v_F^i)^2 = \frac{1}{2} m_S (v_S^i)^2 = \frac{1}{2} m_S (v_S^i)^2 = \frac{1}{2} m_F (v_F^i)^2 \]

(2)

\[K_F = \frac{1}{2} m_F (v_F^i + 1)^2 = \frac{1}{2} m_S (v_S^i)^2 = \frac{1}{2} m_F (v_S^i)^2 \]

\[\Rightarrow \quad \sqrt{v_S^i} = 2 \sqrt{v_F^i} \quad \text{and} \quad (v_F^i + 1)^2 = \frac{1}{2} (v_S^i)^2 - 2(v_F^i)^2 \]

\[(v_F^i)^2 + 2v_F^i - 1 = 0 \quad \Rightarrow \quad v_F^i = (1 + \sqrt{2}) \text{m/s} \]

\[= 2.4 \text{ m/s} \]

The initial speeds of the father and son are 2.4 m/s and twice that:

\[v_F^i = 2.4 \text{ m/s} \quad \text{and} \quad v_S^i = 4.8 \text{ m/s} \]

7-18a

\[W_f = F \cdot d \]

\[= 360 \text{ kN} \cdot 0.10 \text{m} \]

\[W_f = 36 \text{ kJ} \]

\[\text{as positive} \]

b) \[W_M = 4000 \text{ N} \cdot 0.05 \text{m} \]

\[= 200 \text{ J} \]

\[W_M = 200 \text{ J} \]

\[\text{also positive} \]
\[mg = 0.25 \text{ kg} \cdot 9.8 \text{ m/s}^2 = 2.45 \text{ N} \]

\[a = \frac{3.0 \text{ N} - 2.45 \text{ N}}{0.25 \text{ kg}} = +2.2 \text{ m/s}^2 \]

The elevator cab is accelerating upward at a rate of +2.2 m/s²

\[T - 900 \text{ kg} \cdot 9.8 \text{ m/s}^2 - 0.25 \text{ kg} \cdot 9.8 \text{ m/s}^2 = 900 \text{ kg} \cdot 2.2 \text{ m/s} \]

\[\Rightarrow T = 900 \text{ kg} \left(9.8 \text{ m/s}^2 + 2.2 \text{ m/s}^2 \right) + 0.25 \text{ kg} \left(9.8 \text{ m/s}^2 + 2.2 \text{ m/s}^2 \right) \]

\[= 10.8 \text{ kN} \]

\[\Rightarrow W_a = 10.8 \text{ kN} \cdot 2.40 \text{ m} = 25.9 \text{ kJ} \]

b) \[W_b = 92.61 \text{ kJ} = T_b \cdot 10.5 \text{ m} \Rightarrow T_b = 8820 \text{ N} \]

Looking at the FBD for the cab, we find

\[8820 \text{ N} - 900 \text{ kg} \cdot 9.8 \text{ m/s}^2 = 900 \text{ kg} \cdot \alpha_b \]

\[\Rightarrow \alpha_b = 0.0 \text{ m/s}^2 \]

\[\Rightarrow N_c - m_c g = m_c \cdot 0 \text{ m/s}^2 \Rightarrow N_c = m_c g \]

\[= 0.25 \text{ kg} \cdot 9.8 \text{ m/s}^2 \]

\[N_c = 2.45 \text{ N} \]
\[F_x = -k (x - x_0) \Rightarrow |F_x| = 80 N \text{ for } |x - x_0| = 2.0 \text{ cm} \]

(assume the box is 2.0 cm, convert to m)

Let's have \(x_0 = 0 \), then from the first condition we have:

\[80 N = -k (-0.020 \text{ m}) \Rightarrow k = 4000 \text{ N/m} \]

We are also told that \(U(x) - U(2 \text{ cm}) = +4.0 \text{ J} \)

\[\frac{1}{2} k x^2 - \frac{1}{2} k (0.02 \text{ m})^2 = +4.0 \text{ J} \]

\[x^2 = \frac{+8.0 \text{ J}}{4000 \text{ N/m}} \cdot (0.02 \text{ m})^2 \]

\[x = \pm 4.90 \text{ cm} \]

The difference between these two is that the final position is either at the same side of the equilibrium position or the opposite side.
a) If the rope does 900 J of work pulling the skier up at 2.0 m/s, it does exactly the same amount of work while pulling the skier up at 2.0 m/s.

\[900 \text{ J} \]

b) The rate at which the work is done for \(U = 1.0 \text{ m/s} \) can be found by realizing that the time to travel 8.0 m up the slope is \(8.0 \text{ m} / (1.0 \text{ m/s}) = 8.0 \text{ sec} \)

\[P_1 = \frac{900 \text{ J}}{8.0 \text{ sec}} = 112.5 \text{ W} = 110 \text{ W} \]

c) At \(U = 2.0 \text{ m/s} \), the time to travel 8.0 m would be \((8.0 \text{ sec}) \) itself.

\[P_2 = \frac{900 \text{ J}}{4.0 \text{ sec}} = 225 \text{ W} = 220 \text{ W} \]
\[M = 0.250 \text{ kg} \]
\[\Delta y = 0.12 \text{ m} \] (compression distance)
\[k = 250 \text{ N/m} \] (for the spring)

a) \[F_y = mg = 0.25 \text{ kg} \cdot 9.8 \text{ m/s}^2 = 2.45 \text{ N} \]
\[W_y = F_y \Delta y \]
\[= 2.45 \text{ N} \cdot 0.12 \text{ m} \]
\[= 0.294 \text{ J} \]

\[W_y = 0.294 \text{ J} \]

b) \[W_{sp} = -\frac{1}{2} k (\Delta y)^2 \] (-since spring force is upwards)
\[= -\frac{1}{2} \cdot 250 \text{ N/m} \cdot (0.12 \text{ m})^2 \]
\[= -1.8 \text{ J} \]

\[W_{sp} = -1.8 \text{ J} \]

c) The work performed by the combined forces of the spring and gravity must equal the change in the block's kinetic energy (which goes from \(V_1 \) to 0 as the spring is compressed)

\[0 = 1.8 \text{ J} + 0.294 \text{ J} = 0 - \frac{1}{2} m v_0^2 \]

\[\Rightarrow \]
\[v_0 = \sqrt{\frac{2(1.8 \text{ J} - 0.294 \text{ J})}{m}} \]

\[v_0 = 3.47 \text{ m/s} = 3.5 \text{ m/s} \]

d) \[v_1 \text{ in general becomes} \]
\[\frac{1}{2} m v_0^2 = -mgd + \frac{1}{2} kd^2 \]

where \(d \) is the spring compression distance. We can then relate \(d \) to \(v_0 \) through the quadratic formula:

\[d = \frac{mg \pm \sqrt{(mg)^2 + 4 \cdot \frac{1}{2} k \cdot \frac{1}{2} m v_0^2}}{k} \]

We are only interested in the + sign in the
above because a negative value for d would correspond to the spring being stretched, not compressed.

\[d = \frac{0.25 \text{ kg} \cdot 9.8 \text{ m/s}^2 + \sqrt{(0.15 \text{ kg} \cdot 9.8 \text{ m/s}^2)^2 + 250 \text{ N/m} \cdot 0.15 \text{ kg} \cdot (6.94 \text{ m/s})^2}}{250 \text{ N/m}} \]

\[= 0.229 \text{ m} \]

\[d_{2V_0} = 23 \text{ cm} \]