16b) Transverse Wave \(y(x,t) = 6.0 \sin(0.02\pi x + 4\pi t) \)

a) Amplitude \(A = 6.0 \text{ cm} \)

b) The standard form tells us that \(k = 0.02\pi \text{ cm}^{-1} \)
\[
\lambda = \frac{2\pi}{k} = \frac{2\pi}{0.02\pi \text{ cm}^{-1}} = 100 \text{ cm} = 1 \]

c) Again, from comparison to the standard form
\[
\omega = 4\pi \text{ s}^{-1} \Rightarrow f = \frac{\omega}{2\pi} = 2 \text{ Hz}
\]

d) \(v = \omega/k = \frac{4\pi \text{ s}^{-1}}{0.02\pi \text{ cm}^{-1}} = 200 \text{ cm/s} \)

e) The wave is progressing to the right, negative \(x \).
As \(t \) increases, \(x \) must decrease or go more negative to keep the values off the phase angle constant.

\(V < 0 \)

f) Maximum transverse speed is \(2 \omega A \) off the medium. Thus \(V_{f,max} = 2\omega A \), since \(V_f = -\omega A \sin(\lambda x + \phi) \)
\[
V_{f,max} = 4\pi \text{ cm/s} \cdot 6.0 \text{ cm} = 75 \text{ cm/s}
\]

g) \(y(3.5 \text{ cm}, 0.26 \text{ s}) = 6.0 \text{ cm} \cdot \sin(0.719\pi \text{ rad} + 3.167 \text{ rad}) \)
\(= -2.0 \text{ cm} \)
\[V_w = \sqrt{\frac{\rho}{\mu}} \quad \text{where } \mu \text{ is frictional shear stress, } \rho \text{ is linear mass density.} \]

Assuming that \(\rho \) does not change appreciably when \(\mu \) is increased, then

\[V_1 = \sqrt{\frac{\rho}{\mu}} \quad V_2 = \sqrt{\frac{\rho}{\mu}} \]

\[\Rightarrow \frac{V_2}{V_1} = \sqrt{\frac{\rho}{\mu}} \quad = \frac{180 \text{ m/s}}{170 \text{ m/s}} \]

\[\Rightarrow \mu_2 = 120 N \cdot \left(\frac{180 \text{ m/s}}{170 \text{ m/s}} \right)^2 \]

\[\mu_2 = 135 N \]
We use the general form for a harmonic wave:

\[y = y_m \sin(\kappa x - \omega t + \phi_0) = 5.0 \text{ cm} \sin(1.0 - 4.0 \text{ cm}^{-1} t) \]

a) From looking at the above we see immediately

\[\omega = 4.0 \text{ rad s}^{-1} \quad \Rightarrow \quad f = \frac{\omega}{2\pi} = 0.637 \text{ Hz} \]

\[f \approx 0.64 \text{ Hz} \]

b) \(f \tau = u \omega = 40 \text{ cm/s} \Rightarrow \tau = \frac{40 \text{ cm/s}}{0.637 \text{ Hz}} = 62.8 \text{ cm} \]

\[\tau = 63 \text{ cm} \]

c) \[y_m = 5.0 \text{ cm} \]

d) \[\kappa = \frac{u}{\omega} = \frac{62.8 \text{ cm}}{0.1 \text{ cm}^{-1}} = 0.1 \text{ cm}^{-1} = 10 \text{ rad/m} \]

Note we also have \(kx + \phi_0 = 1.0 \text{ rad} \), but we could determine \(k \) from this only if we knew that \(\phi_0 = 0 \). In this case it appears that it is.

e) \(u = 4.0 \text{ m/s} \) as discussed in a.

f) The sign is -. Since the problem says nothing about the direction of propagation, we must assume the sign given is the one they want.

g) \[40 \text{ cm/s} = 0.40 \text{ m/s} = \sqrt{\frac{k}{\mu}} = \sqrt{\frac{0.4 \text{ kg/m}}{1}} \]

\[\Rightarrow \quad T = 6.4 \times 10^{-2} \text{ N} \]

Note the numbers for \(T \) and \(\mu \) in this problem are not very realistic, but they are what were given!
16-24) We are told (or could figure out from the relevant force body diagram) that \(T = \frac{1}{2} Mg = 2.45 \text{ N} \)

\(a) \quad V_1 = \sqrt{\frac{T}{m_1}} = \sqrt{\frac{2.45 \text{ N}}{0.003 \text{ kg/m}}} = 28.6 \text{ m/s} \)

\(b) \quad V_2 = \sqrt{\frac{T}{m_2}} = \sqrt{\frac{2.45 \text{ N}}{0.005 \text{ kg/m}}} = 22.1 \text{ m/s} \)

\(c) \quad \text{For this case we have } T_1 + T_2 = 4.90 \text{ N, but they no longer need be equal. However, we want the wave speeds to be equal, i.e.:} \)

\[\sqrt{\frac{T}{0.003 \text{ kg/m}}} = \sqrt{\frac{T}{0.005 \text{ kg/m}}} \]

\[T_1 = \frac{3}{5} T_2 \]

\[\frac{3}{5} T_2 + T_2 = 4.90 \text{ N} \]

\[T_2 = 4.90 \text{ N} \cdot \frac{5}{8} \]

\[T_1 = \frac{3}{8} \cdot 4.90 \text{ N} \]

\(d) \quad T_2 = 3.062 \text{ N} \rightarrow m_2 = 0.312 \text{ kg} \)

\(e) \quad T_1 = 1.838 \text{ N} \rightarrow m_1 = 0.188 \text{ kg} \)
According to 16.37, the rate at which energy is transferred is

\[P = \frac{1}{2} \mu v W^2 y_m^2 \]

\[v = \sqrt{\frac{1200 N}{0.002 \text{ kg/m}}} = 774.6 \text{ m/s} \]

\[y_m = 0.003 \text{ m} \]

\[P = \frac{1}{2} \cdot (0.002 \text{ kg/m}) \cdot (774.6 \text{ m/s})^2 \cdot (0.003 \text{ m})^2 \]

\[= 10.0 \text{ W} \]

b) Two sinusoidal waves, propagating independently, would carry energy at a rate of twice that of a

\[P_2 = 2P_1 = 20.0 \text{ W} \]

c) \(\phi = 0 \Rightarrow \text{perfect constructive interference,} \; \mu \text{ and wall stay the same, but} \; y_m \text{ decreases} \)

\[P_3 = 40 \text{ W} \]

d) \(\phi = 0, 0.4 \pi \text{ rad} \)

\[y = 2y_m \cos(\phi) \left[\sin(kx - \omega t + \phi) \right] / A \]

The destructive interference is when \(4.85 \text{ mm} = 1.618 \cdot y_m \)

\[\Rightarrow \] \(P_4 = 2.62 \cdot P_1 = 26.2 \text{ W} \)

e) Now interference is perfectly destructive

\[\Rightarrow A = 0 \quad P = 0 \]
L = 1.20 m so the wavelength of any standing wave must be an integer fraction of 2L:

\[
\begin{align*}
&\frac{2L}{1} = \lambda = 2L \quad \frac{2L}{2} = \lambda = L \\
&\quad \lambda = \frac{3}{2} L \text{ etc}
\end{align*}
\]

a) For the case \(\lambda = \frac{L}{2} \Rightarrow \omega = 120 \text{ Hz} \cdot \frac{1.20 \text{ m}}{2} = 72.0 \text{ m/s} \)

\[
\nu = \sqrt{\frac{\omega}{\mu}} \Rightarrow T = (720 \text{ m/s})^2 \cdot 0.0016 \text{ kg/m} \]

\[
T = 8.274 \Rightarrow m = 0.846 \text{ kg}
\]

\[
\sin \theta = m g
\]

b) \(m = 1.0 \text{ kg} \Rightarrow T = 9.80 \text{ N} \Rightarrow \omega = \sqrt{\frac{9.80 \text{ N}}{0.0016 \text{ kg/m}}} = 7812 \text{ m/s} \)

\[
7812 \text{ m/s} = f \lambda \Rightarrow \lambda = \frac{7812 \text{ m/s}}{120 \text{ Hz}} = 0.652 \text{ m}
\]

This wavelength is not an integer fraction of 2L so no wave cannot set up a standing wave at this frequency set up with this weight.

\[
\frac{0.652 \text{ m}}{1.20 \text{ m}} = 0.54
\]