$t = 0 \quad U_s(t = 0) = U_{\text{max}} \cdot 0.8
\quad = -A \omega \sin (\omega t + \phi) \bigg|_{t = 0}$

$\Rightarrow \sin \phi = -0.8$

$\Rightarrow \phi = -53.1^\circ \quad \text{or} \quad -0.927 \text{rad}$

$\quad \phi = 233^\circ \quad \text{or} \quad 4.07 \text{rad}$

(\text{or } -127^\circ)$

How do we distinguish between these cases?

The velocity is getting smaller as time moves forward, therefore only the 1st pair of answers will work. If $\phi = 127^\circ$ then at later times v would increase, not decrease!
\[X_L = 1.0 \text{cm} \cos(\omega t + \pi/2) \Rightarrow V_x = -W \cdot 1.0 \text{cm} \sin(\omega t + \pi/2) \]
\[\omega = \frac{2\pi}{0.02 \text{s}} = 314.2 \text{ rad/s} \Rightarrow V_{Lx} = -3.14 \text{ m/s} \cdot \sin(\pi) = 0 \]

The question suggests that we can neglect the spring during the collision, so momentum will be conserved at \(V_x = 0 \) initially. Since the two blocks stick together,

\[m_1 V_1 = (m_1 + m_2) V_f \]
\[4 \text{ kg} \cdot 6.0 \text{ m/s} = (4 + 2) \text{ kg} \cdot V_f \]
\(\Rightarrow \]
\[V_f = \frac{4 \text{ kg}}{(4 + 2) \text{ kg}} \cdot 6.0 \text{ m/s} = 4.0 \text{ m/s} \]

\(\Rightarrow \) After the collision, the system has potential energy

\[\omega^2 = \frac{k}{m} \Rightarrow k = 2.0 \text{ kg} \cdot (314.2 \text{ rad/s})^2 = 197.4 \text{ kN/m} \]

\[U_{el} = \frac{1}{2} \cdot 197.4 (0.01 \text{ m})^2 \times 10^3 \]
\[H = \frac{1}{2} m V_2^2 = \frac{1}{2} (4 + 2) \text{ kg} \cdot (4 \text{ m/s})^2 = 48 \text{ J} \]

\(\Rightarrow \) \[E_{tot} = 57.87 \text{ J} = \frac{1}{2} k A^2 \]

\[A = 2.42 \text{ cm} \quad \Rightarrow A = 2.4 \text{ cm} \]
By the parallel axis theorem, we have

\[I = mx^2 + \frac{1}{2} ml^2 \]

(see Table 10-2 p 253)

\[T = \frac{2\pi}{\sqrt{g}} \sqrt{x + \frac{1}{2} L^2} \]

we can find the extreme of \(T \) by setting its derivative with respect to \(x \) to zero

\[\frac{dT}{dx} = \frac{\pi}{\sqrt{g}} \frac{y_1 (1 - y_1 L^2/x^2)}{\sqrt{x + y_1 L^2/x}} = 0 \]

\[\Rightarrow \frac{1}{x} \frac{L^2}{x^2} = 1 \]

\[\Rightarrow x = \sqrt{y_1} L = \frac{1.85m}{3.485} \]

\[x = 0.53 \text{ m} \]

b) \[T = \frac{2\pi}{\sqrt{g}} \left(0.53 + \frac{1}{y_1} \left(\frac{1.85m}{0.53} \right)^2 \right)^{y_1} \]

\[T = 2.1 \text{ s} \]
\[x = A \cos(\omega t + \phi) \quad \phi = \frac{\pi}{5} \]

@ \(t = 0 \) \quad x = A \cos(\frac{\pi}{5}) = 0.8090 A

The total energy is proportional to \(A^2 \).

The potential energy is proportional to \(x^2 \). Hence,

\[U(1) = \frac{1}{2} k (0.8090 A)^2 = 0.655 \cdot \frac{1}{2} k A^2 \]

\[U(1) = 0.655 \cdot A \cdot E_{\text{tor}} \]

\(\Rightarrow 65.5\% \) of the energy is potential at this point.
\[\mathbf{T} = F_r = (k \cdot r \theta) \mathbf{r} \]

Since \(r \theta \) is approximately equal to the displacement from equilibrium, we have:

\[\ddot{r} = \frac{1}{r^2} \frac{d}{dt} \frac{\dot{r}}{r} = \frac{k r^2}{m r^3} \]

\[\alpha = \frac{T}{I} = \frac{k r^2}{m r^2} \theta = \frac{d^2 \theta}{dt^2} \]

We see that the second derivative of \(\theta \) w.r.t. \(t \) is proportional to \(\theta \), so the motion is indeed simple harmonic. The proportionality constant to \(\omega^2 \) hence is:

\[\omega = \sqrt{\frac{k}{m}} \frac{r^2}{R^2} \]

(Note: The dimensions clearly work out correctly.)

b) \(r = R \Rightarrow \omega = \sqrt{\frac{k}{m}} \)

c) \(r \to 0 \Rightarrow \omega \to 0 \) (i.e. There is no oscillation in this case since the restoring torque goes to zero).
a) Since $V = 0$ at this point, the spring is stretched to its maximum extent in the oscillation.

\[F_{sp} = 100 \text{N/m} \times 0.3 \text{m} = 30 \text{ N} \quad \text{upward} \quad \text{and gravity is down} \]

\[\Rightarrow F_{net} = 10 \text{ N up} \]

b) \(A \) is not simply 0.3 m, since with the weight attached, \(x = 0 \) will not be the equilibrium position. That will actually be when \(|F_{el}| = mg \) (i.e. \(F_{net} = 0 \))

\[20 \text{ N} = 100 \text{N/m} \times x_{eq} \]

\[\Rightarrow x_{eq} = 0.2 \text{m} \]

\[A = 0.1 \text{m} \]

c) \[\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{100 \text{N/m}}{2.04 \text{kg}}} = 7.00 \text{ rad/s} \]

\[\Rightarrow T = \frac{2\pi}{\omega} = 0.90 \text{ sec} \]

d) \[KE_{max} = \frac{1}{2} m v_{max}^2 = \frac{1}{2} k A^2 \]

\[KE_{max} = \frac{1}{2} \cdot 100 \text{N/m} \cdot (0.10 \text{m})^2 \]

\[KE_{max} = 0.50 \text{J} \]