Problem Set 6
(Due: October 23, 2008)

1) Jackson, problem 2.13.
 (a) Two halves of a long hollow conducting cylinder of inner radius \(b \) are separated by small lengthwise gaps on each side, and are kept at different potentials \(V_1 \) and \(V_2 \). Show that the potential inside is given by
 \[
 \Phi(\rho, \phi) = \frac{V_1 + V_2}{2} + \frac{V_1 - V_2}{\pi} \tan^{-1}\left(\frac{2b\rho}{b^2 - \rho^2 \cos \phi}\right)
 \]
 where \(\phi \) is measured from a plane perpendicular to the plane through the gap.
 (b) Calculate the surface-charge density on each half of the cylinder.

2) Note that all branches of \(\log z \) have the same real component which satisfies Laplace’s equation everywhere except the origin. Using \(w = \log z \), show that the electrostatic potential \(\Phi(x, y) \) in the space between two coaxial conducting cylindrical surfaces \(x^2 + y^2 = 1 \) and \(x^2 + y^2 = r_0^2 \) (\(r_0 > 1 \)) when \(\Phi = 0 \) on the inner surface and \(\Phi = V \) on the outer surface is
 \[
 \Phi = \frac{\ln(x^2 + y^2)}{2 \ln r_0}.
 \]
 Note: This problem is immediately solved using Eqn. (2.71) from Jackson. I want you to use the \(\log \) function on the complex plane instead.

3) The two-dimensional region, \(\rho \geq a \), \(0 \leq \phi \leq \beta = \frac{\pi}{2} \) is bounded by conducting surfaces at \(\phi = 0 \), \(\rho = a \), and \(\phi = \beta = \frac{\pi}{2} \) held at potential \(V \) (there is an appropriate figure on page 93 of Jackson). At large \(\rho \) the potential is determined by some configuration of charges and/or conductors at fixed potentials.
 (a) Using a conformal mapping, write down a solution for the potential \(\Phi(\rho, \phi) \) that satisfies the boundary conditions for finite \(\rho > a \). [Hint: Consider the map \(F(z) = z^2 + 1/z^2 \).]
 (b) What is the electric field for finite \(\rho > a \)?
 (c) Now consider a cylinder of radius \(a \) attached to the end of a half-plane, i.e. the situation described in part (a) but with \(\beta = 2\pi \). What conformal mapping would allow you to solve this problem? Just give the map; you don’t need to find an expression for \(\Phi(\rho, \phi) \).