1) Jackson, problem 1.1.

Use Gauss’s theorem [and (1.21) if necessary] to prove the following:

(a) Any excess charge placed on a conductor must lie entirely on its surface. (A conductor by definition contains charges capable of moving freely under the action of applied electric fields.)

(b) A closed, hollow conductor shields its interior from fields due to charges outside, but does not shield its exterior from the fields due to charges placed inside it.

(c) The electric field at the surface of a conductor is normal to the surface and has a magnitude $\frac{\sigma}{\varepsilon_0}$, where $\sigma$ is the charge density per unit area on the surface.

2) Jackson, problem 1.3.

Using the Dirac delta function in the appropriate coordinates, express the following charge distributions as three-dimensional charge densities $\rho(x)$.

(a) In spherical coordinates, a charge $Q$ uniformly distributed over a spherical shell of radius $R$.

(b) In cylindrical coordinates, a charge $\lambda$ per unit length uniformly distributed over a cylindrical surface of radius $b$.

(c) In cylindrical coordinates, a charge $Q$ spread uniformly over a flat circular disc of negligible thickness and radius $R$.

(d) The same as part (c), but using spherical coordinates.

3) Jackson, problem 1.4.

Each of three charged spheres of radius $a$, one conducting, one having a uniform charge density within its volume, and one having a spherically symmetric charge density that varies radially as $r^n$ ($n > -3$), has a total charge $Q$. Use Gauss’s theorem to obtain the electric fields both inside and outside each sphere. Sketch the behavior of the fields as a function of radius for the first two spheres, and for the third with $n = -2, +2$. 

4) Jackson, problem 1.5.

The time-averaged potential of a neutral hydrogen atom is given by

\[ \Phi = \frac{q}{4\pi \varepsilon_0} \frac{e^{-\alpha r}}{r} \left( 1 + \frac{\alpha r}{2} \right) \]

where \( q \) is the magnitude of the electronic charge, and \( \alpha^{-1} = a_0/2 \), \( a_0 \) being the Bohr radius. Find the distribution of charge (both continuous and discrete) that will give this potential and interpret your result physically.